THE CENTER OF Uq(nω)

نویسنده

  • HANS P. JAKOBSEN
چکیده

We determine the center of a localization of Uq(nω) ⊆ U q (g) by the covariant elements (non-mutable elements). Here, g is any finite-dimensional complex Lie algebra and ω is any element in the Weyl group W. The non-zero complex parameter q is assumed not to be a root of unity. The center is determined by the null space of 1 + ω. Another family of quadratic algebras is also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LECTURE 15: REPRESENTATIONS OF Uq(g) AT ROOTS OF 1

In Lecture 13 we have studied the representation theory of Uq(g) when q is not a root of 1. We have seen that the representation theory basically looks like the representation theory of g (over C). In this lecture we are going to study a more complicated case: when q is a root of 1 (we still need to exclude some small roots of 1 to make the algebra Uq(g) defined). When we deal with the usual de...

متن کامل

CONSTRUCTING IRREDUCIBLE REPRESENTATIONS OF QUANTUM GROUPS Uq(f(K))

As generalizations of Uq(sl2), a class of algebras Uq(f(K)) were introduced and studied in [7]. For some special parameters f(K) = a(Km − K−m), a 6= 0, m ∈ N, Uq(f(K)) are Hopf algebras and hence quantum groups in the sense of Drinfeld ([3]). In this paper, we realize these algebras as Hyperbolic algebras ([12]). As an application of this realization, we obtain a natural construction of irreduc...

متن کامل

On Representations of Quantum Groups

We construct families of irreducible representations for a class of quantum groups Uq(fm(K,H). First, we realize these quantum groups as Hyperbolic algebras. Such a realization yields natural families of irreducible weight representations for Uq(fm(K,H)). Second, we study the relationship between Uq(fm(K,H)) and Uq(fm(K)). As a result, any finite dimensional weight representation of Uq(fm(K,H))...

متن کامل

CONSTRUCTING IRREDUCIBLE REPRESENTATIONS OF QUANTUM GROUPS Uq(fm(K))

In this paper, we construct families of irreducible representations for a class of quantum groups Uq(fm(K)). First, we give a natural construction of irreducible weight representations for Uq(fm(K)) using methods in spectral theory developed by Rosenberg. Second, we study the Whittaker model for the center of Uq(fm(K)). As a result, the structure of Whittaker representations is determined, and ...

متن کامل

TENSOR OPERATORS AND WIGNER-ECKART THEOREM FOR THE QUANTUM SUPERALGEBRA Uq[osp(1 | 2)]

Tensor operators in graded representations of Z2−graded Hopf algebras are defined and their elementary properties are derived. WignerEckart theorem for irreducible tensor operators for Uq[osp(1 | 2)] is proven. Examples of tensor operators in the irreducible representation space of Hopf algebra Uq[osp(1 | 2)] are considered. The reduced matrix elements for the irreducible tensor operators are c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015